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Abstract
Unitary transformations in an angular momentum Hilbert space H(2j + 1), are
considered. They are expressed as a finite sum of the displacement operators
(which play the role of SU(2j + 1) generators) with the Weyl function as
coefficients. The Chinese remainder theorem is used to factorize large qudits
in the Hilbert space H(2j + 1) in terms of smaller qudits in Hilbert spaces
H(2ji + 1). All unitary transformations on large qudits can be performed
through appropriate unitary transformations on the smaller qudits.

PACS number: 03.67.Lx

1. Introduction

Much of the work on quantum computation has been based on qubits in two-dimensional
Hilbert spaces. More recently the use of multi-dimensional Hilbert spaces (qudits) as a
potentially more powerful tool for quantum computation has been studied [1]. At the same
time, the physical implementation of the required unitary transformations is much more
difficult in Hilbert spaces with large dimension. SU(d) transformations in a d-dimensional
Hilbert space have d2 − 1 generators, which for large d might be very difficult to implement
practically.

In this paper we show how we can factorize large qudits in terms of smaller ones, so
that all unitary transformations on the large qudits can be performed through appropriate
unitary transformations on the smaller qudits. This factorization is similar to that used in
a classical context in ‘fast Fourier transforms’ where a Fourier transform in a large Hilbert
space is reduced to many Fourier transforms in smaller Hilbert spaces which are appropriately
combined to give the result for the large Hilbert space.

In section 2 we present briefly the quantum mechanics in a (2j + 1)-dimensional angular
momentum system with integer j (Bose case) and introduce the notation. We explain that the
displacement operators can be used as generators of SU(2j +1) transformations; and we show
that finite SU(2j + 1) transformations can be expressed as a finite sum of the displacement
operators, with the Weyl function as coefficients.

In section 3 we use the Chinese remainder theorem to factorize large qudits in terms of
smaller ones. We show that all unitary transformations on large qudits can be performed

0305-4470/03/205645+09$30.00 © 2003 IOP Publishing Ltd Printed in the UK 5645

http://stacks.iop.org/ja/36/5645


5646 A Vourdas

through appropriate unitary transformations on the smaller qudits. We conclude in section 4
with a discussion of our results.

2. Qudits

Finite quantum systems have been studied originally by Weyl and Schwinger [2]. More
recently this work has been applied in various contexts by various authors [3]. In [4] we
have applied these ideas in the context of the angle-angular momentum quantum phase space.
In this section we first introduce the notation and review briefly some of these ideas in
the context of qudits. We then discuss the use of displacement operators as generators of
SU(2j + 1) transformations and we express finite SU(2j + 1) transformations as finite sums
of the displacement operators, with the Weyl function as coefficients.

We denote as |J, jm〉 the usual angular momentum states; m belongs to Z(2j + 1) (the
integers modulo 2j + 1). The states |J, jm〉 span the Hilbert space H(2j + 1). The finite
Fourier transform is defined as

F = (2j + 1)−1/2
∑
m,n

ω(mn)|J ; jm〉〈J ; jn| (1)

ω(α) = exp

[
i

2πα

2j + 1

]
FF † = F †F = 1 F 4 = 1. (2)

Using these Fourier transforms we have introduced [4] the θ -basis of angle states |θ; jm〉 as
follows:

|θ; jm〉 = F |J ; jm〉 = (2j + 1)−1/2
∑

n

ω(mn)|J ; jn〉. (3)

We have also introduced the angle operators θz = FJzF
†, θ+ = FJ+F

†, θ− = FJ−F †, which
obey the SU(2) algebra. The displacement operators are defined as

X = exp

[
−i

2π

2j + 1
θz

]
Z = exp

[
i

2π

2j + 1
Jz

]
(4)

X2j+1 = Z2j+1 = 1 XβZα = ZαXβω(−αβ) (5)

where α, β are integers in Z(2j + 1), and perform displacements along the Jz and θz axes, as
follows:

Xβ |J ; jm〉 = |J ; jm + β〉 Xβ |θ; jm〉 = ω(−βm)|θ; jm〉 (6)

Zα|J ; jm〉 = ω(mα)|J ; jm〉 Zα|θ; jm〉 = |θ; jm + α〉. (7)

The general displacement operators are defined as

D(α, β) = ZαXβω(−2−1αβ) [D(α, β)]† = D(−α,−β). (8)

Many of the formulae below are proved with the use of the relations

〈J ; jn|D(α, β)|J ; jm〉 = δ(n,m + β)ω(2−1αβ + αm)

j∑
m=−j

ω(mα) = (2j + 1)δ(α, 0)
(9)

where δ(n,m) is the Kronecker delta which is equal to 1 when n = m(mod (2j + 1)).
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We also define the parity operator around the origin

P(0, 0) = F 2 =
j∑

m=−j

|J ; j − m〉〈J ; jm| =
j∑

m=−j

|θ; j − m〉〈θ; jm| (10)

and the displaced parity operator

P(α, β) = D(α, β)P (0, 0)[D(α, β)]† = D(2α, 2β)P (0, 0) = P(0, 0)[D(2α, 2β)]† (11)

P(α, β)P (γ, δ) = D(2α − 2γ, 2β − 2δ)ω(2βγ − 2αδ). (12)

Wigner and Weyl or characteristic functions (discussed in the harmonic oscillator context
in [5–7]) can be defined for general operators, which are not necessarily density matrices.
In our context we are interested in Wigner and Weyl functions corresponding to a unitary
transformation U.

The Wigner function corresponding to an operator U, is defined in terms of the displaced
parity operator as

W(U ; α, β) = Tr[UP(α, β)]. (13)

We note that since U is in general a non-Hermitian operator, the Wigner function is complex.
The Weyl function corresponding to an operator U, is defined in terms of the displaced

operator as

W̃(U ; α, β) = Tr[UD(α, β)] = (2j + 1)−1
∑
γ,δ

W(U ; γ, δ)ω(αδ − βγ ). (14)

It is seen that it is related to the Wigner function through a ‘two-dimensional’ Fourier transform
(indicated with the tilde in the notation). For later purposes, we prove the important formula

U = (2j + 1)−1
∑
α,β

W(U ; α, β)P (α, β) = (2j + 1)−1
∑
α,β

W̃(U ; −α,−β)D(α, β). (15)

It can be proved if we take the matrix elements of both sides with regard to the states 〈J ; jn|
and |J ; jm〉 and use equations (9).

2.1. Infinitesimal transformations

The (2j + 1)2 − 1 displacement operators (with (α, β) �= (0, 0)) are generators for the
SU(2j + 1) transformations in the Hilbert space H(2j + 1) [8]. They are an alternative to the
usual Cartan–Weyl generators. Their commutator is

[D(α1, β1),D(α2, β2)] ≡ D(α1, β1)D(α2, β2) − D(α2, β2)D(α1, β1)

= 2i sin

[
2π

2j + 1
2−1(α1β2 − α2β1)

]
D(α1 + α2, β1 + β2). (16)

Therefore infinitesimal SU(2j + 1) transformations can be written as

g = 1 +
∑
α,β

λ(α, β)D(α, β) λ(α, β) + [λ(−α,−β)]∗ = 0 (17)

where λ(α, β) are infinitesimal coefficients, subject to the above ‘unitarity constraint’.
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2.2. Finite transformations

Finite SU(2j + 1) transformations involve the exponentials of the generators. The generators
are here finite matrices, and since the exponential of a finite matrix is a polynomial, we can
write an arbitrary unitary operator U as

U =
∑
α,β

µ(α, β)D(α, β) µ(α, β) = (2j + 1)−1W̃ (U ; −α,−β) (18)

where from equation (15) we see that the coefficients are the Weyl functions. Equation (18)
shows that the displacement operators are the basic ‘building blocks’ for general unitary
transformations of qudits. If we have ‘black boxes’ that perform the displacement
transformations on qudits, then we can perform any unitary transformation using as coefficients
the corresponding Weyl functions. For a product of two unitary operators U1U2, we can
show that

W̃(U1U2; α, β) = (2j + 1)−1
∑
α1,β1

ω(2−1α1β − 2−1αβ1)

×W̃ (U1; 2−1α + α1, 2−1β + β1)W̃ (U2; 2−1α − α1, 2−1β − β1). (19)

This is proved if we take the matrix elements of both sides with regard to the states 〈J ; jn|
and |J ; jm〉 and use equations (9). We note that 2−1 in Z(2j + 1) is equal to j + 1.

Equation (15) also suggests the use of the displaced parity operators as an alternative set
of building blocks for general unitary transformations of qudits:

U =
∑
α,β

ν(α, β)P (α, β) ν(α, β) = (2j + 1)−1W(U ; α, β). (20)

Here the coefficients are Wigner functions. We note that the displaced parity operators are
not generators of SU(2j + 1) transformations; and in fact the product of two displaced parity
operators is not a displaced parity operator (equation (12)). However, the Moyal star product
(in the context of finite systems) tells us how to multiply two unitary operators U1U2 in this
scheme. We show that

W(U1U2; α, β) = (2j + 1)−2
∑

α1,β1,α2,β2

ω(2α2β1 − 2α1β2)

×W(U1; α + α1, β + β1)W(U2; α + α2, β + β2). (21)

This is proved if we take the matrix elements of both sides with regard to the states 〈J ; jn|
and |J ; jm〉 and use equations (9). Taking three transformations, we can show that the Moyal
product is associative.

3. Factorization of large qudits in terms of smaller ones

We consider the case where 2j + 1 can be factorized as 2j + 1 = ∏N
i=1(2ji + 1), where any

two of the factors 2ji + 1 are coprime. In this case we introduce an isomorphism between the
Hilbert space H(2j + 1) and a product of Hilbert spaces

∏N
i=1 H(2ji + 1). This isomorphism

is based on the Chinese remainder theorem and it is similar to the prime factor scheme by
Good in a classical context in ‘fast Fourier transform’ in order to reduce the computation time
(e.g. [9]). The Chinese remainder theorem has also been used in quantum Fourier transforms
(e.g. [10]).

In our context we show that unitary transformations on large qudits can be decomposed to
several unitary transformations on smaller qudits; and appropriate combination of the results
for the smaller qudits produces the unitary transformations of the large qudits. We have
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studied the isomorphism between H(2j + 1) and
∏N

i=1 H(2ji + 1) in [11], and here we extend
this work especially in the direction of how all unitary transformations on the large qudits
(in H(2j + 1)) can be decomposed into unitary transformations in the smaller qudits (i.e., in
the various H(2ji + 1)).

3.1. Quantum states

We use the same notation as in [11], and introduce the integers

ri = 2j + 1

2ji + 1
tiri = 1 (mod 2ji + 1). (22)

The existence of ti depends on the fact that the ri and 2ji + 1 are coprime. We also introduce
the si = ti ri in Z(2j + 1). We note that since ti is the inverse of ri in Z(2ji + 1), the si = ti ri

defined in Z(2j + 1) is an integer multiple of (2ji + 1) plus 1. For a given m in Z(2j + 1) we
define the corresponding mi and m̄i in Z(2ji + 1) as follows:

mi = m (mod 2ji + 1) m̄i = mti (mod 2ji + 1)

m =
∑

i

misi =
∑

i

m̄iri (mod 2j + 1). (23)

We then have the one-to-one mappings m ↔ {mi} ↔ {m̄i}. Using this we define a unitary
isomorphism between the Hilbert space H(2j + 1) and the product

∏
H(2ji + 1) with

|J ; jm〉 ↔
N∏

i=1

|J ; jim̄i〉 |θ; jm〉 ↔
N∏

i=1

|θ; jimi〉. (24)

The proof of this has been given in [11].
A general density matrix

ρ =
∑
m,n

σ (m, n)|J ; jm〉〈J ; jn| =
∑
k,�

τ (k, �)|θ; jk〉〈θ; j�| (25)

σ(m, n) = (2j + 1)−1
∑
k,�

τ (k, �)ω(mk − �n) (26)

can be written as

ρ =
∑
m̄i ,n̄i

σ ({m̄i}, {n̄i})
N∏

i=1

(|J ; jim̄i〉〈J ; jin̄i |) =
∑
ki ,�i

τ ({ki}, {�i})
N∏

i=1

(|θ; jiki〉〈θ; ji�i|) (27)

σ({m̄i}, {n̄i}) =
[

N∏
i=1

(2ji + 1)−1

]∑
ki ,�i

τ ({ki}, {�i})
N∏

i=1

ωi(m̄iki − �i n̄i ) (28)

where the coefficients σ(m, n) have been relabelled as σ({m̄i}, {n̄i}); and similarly for τ (k, �).
The Fourier transform of equation (26) is equivalent to the Fourier transforms of equation (28).
This can be proved with the use of equation (23) in conjuction with the fact that

ω(risi) = ωi ≡ exp

(
i

2π

2ji + 1

)
i �= j → ω(ri sj ) = 1. (29)
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3.2. Infinitesimal transformations

We first show that the displacement operators (generators of SU(2j + 1) transformations)
in H(2j + 1) can be expressed as products of the displacement operators (generators of
SU(2ji + 1) transformations) in the various H(2ji + 1),

D(α, β) =
N∏

i=1

Di(αi, β̄i) (30)

where as explained in equation (23) αi = α(mod 2ji + 1) and β̄i = βti (mod 2ji + 1). In
order to prove this we first use equation (23) to prove that

Z =
∑
m

|θ; jm + 1〉〈θ; jm| =
∑
m

N∏
i=1

|θ; jimi + 1〉〈θ; jimi | =
N∏

i=1

Zi

X =
∑
m

|J ; jm + 1〉〈J ; jm| =
∑
m

N∏
i=1

|J ; jim̄i + ti〉〈J ; jim̄i| =
N∏

i=1

X
ti
i

(31)

and then prove that(
N∏

i=1

Zi

)α (
N∏

i=1

X
ti
i

)β

=
N∏

i=1

(
Z

αi

i X
β̄i

i

)
ω(−2−1αβ) =

N∏
i=1

ωi(−2−1αiβ̄i ). (32)

We can also prove a relation analogous to (30) for the displaced parity operators. Using
equations (11) and (30) we get

P(α, β) =
N∏

i=1

Pi(αi, β̄i). (33)

We next consider the displacement operators which act on only one of the Hilbert spaces
H(2ji + 1). They are those with α = siαi and β = ri β̄i where αi and β̄i are any integers in
Z(2ji + 1). Indeed in this case we can easily show that for j �= i we have αj = β̄j = 0; and
consequently, the product on the right-hand side of equation (30) contains only one non-trivial
factor

D(siαi, ri β̄i) = Di(αi, β̄i ) (34)

These displacement operators are the
∑

[(2ji + 1)2 − 1] generators of the group F =∏
SU(2ji + 1), which is a subgroup of SU(2j + 1). The group F describes factorizable

transformations U = ∏
Ui which act independently on the various Hilbert spaces H(2ji + 1).

The rest (2j + 1)2 − 1 −∑
[(2ji + 1)2 − 1] generators contain two or more non-trivial factors

in the product on the right-hand side of equation (30) and produce non-factorizable
transformations.

Infinitesimal SU(2j + 1) transformations can be written as

g = 1 +
∑
α,β

λ(α, β)D(α, β) = 1 +
∑

{αi },{βi}
λ({αi}, {β̄i})

N∏
i=1

Di(αi, β̄i) (35)

where λ(α, β) are infinitesimal coefficients. It is seen that all the unitary transformations of
the large qudits can be constructed as combinations of unitary transformations of the smaller
qudits. In fact, we only need

∑
[(2ji + 1)2 − 1] ‘black boxes’ and then through equation (30)

we can construct all (2j + 1)2 − 1 generators of SU(2j + 1) transformations.
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3.3. Finite transformations

We next consider finite SU(2j + 1) transformations, and using equations (18) and (30) we get

U =
∑

{αi},{βi}
W̃({−αi}, {−β̄i})

N∏
i=1

Di(αi, β̄i )

W̃ ({αi}, {β̄i}) = (2j + 1)−1 Tr

[
U

N∏
i=1

Di(αi, β̄i )

]
.

(36)

This shows again that in our scheme the
∑

[(2ji + 1)2 − 1] displacement operators Di(αi, β̄i )

are the basic ‘building blocks’ for general unitary transformations on the large qudits in
H(2j + 1) (which in fact have (2j + 1)2 − 1 generators). The required coefficients are the
Weyl functions given above.

In the special case of factorizable transformationsU = ∏
Ui , the Weyl function factorizes

W̃({αi}, {β̄i}) =
N∏

i=1

W̃ i(αi, β̄i) W̃ i(αi, β̄i ) = (2ji + 1)−1 Tr[UiDi(αi, β̄i)] (37)

and the above equation becomes

U =
N∏

i=1


 ∑

{αi},{βi}
W̃ i(−αi,−β̄i )Di(αi, β̄i )


 . (38)

We can have an analogous scheme in terms of the displacement parity operators.
Equations (20) and (33) give

U =
∑

{αi},{βi}
W({αi}, {β̄i})

N∏
i=1

Pi(αi, β̄i )

W({αi}, {β̄i}) = (2j + 1)−1 Tr

[
U

N∏
i=1

Pi(αi, β̄i )

]
.

(39)

This shows that the
∑

[(2ji + 1)2 − 1] displaced parity operators Pi(αi, β̄i ) can also be
used as the basic ‘building blocks’ for general unitary transformations on the large qudits in
H(2j + 1). The required coefficients here are the Wigner functions. Here also, in the special
case of factorizable transformations the Wigner function factorizes

W({αi}, {β̄i}) =
N∏

i=1

Wi(αi, β̄i) Wi(αi, β̄i) = (2ji + 1)−1 Tr[UiPi(αi, β̄i)] (40)

and the above equation becomes

U =
N∏

i=1


 ∑

{αi},{βi}
Wi(αi, β̄i )Pi(αi, β̄i )


 . (41)

4. Discussion

We have considered unitary transformations in an angular momentum Hilbert space H(2j +1).
The displacement operators are generators of the SU(2j + 1) group and finite transformations
have been expressed in equation (18) as a finite sum of the displacement operators with the
Weyl function as coefficients. An alternative expansion has been given in equation (20) where
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finite transformations have been expressed as a finite sum of the displaced parity operators
with the Wigner function as coefficients. These two expansions show that the displacement
operators or the displaced parity operators can be used as ‘building blocks’ for general unitary
transformations of qudits. There are (2j + 1)2 − 1 displacement operators (or displaced parity
operators) which for large qudits is a large number. A reduction in the number of these building
blocks is highly desirable.

The Chinese remainder theorem is used to factorize large qudits in the Hilbert space
H(2j + 1) in terms of smaller qudits in Hilbert spaces H(2ji + 1). All unitary transformations
on large qudits can be performed through appropriate unitary transformations on the smaller
qudits. Equation (36) expresses unitary transformations of the large qudits in H(2j + 1), as a
finite sum of the displacement operators acting on the smaller qudits in the various H(2ji + 1),
with the Weyl function as coefficients. There are

∑
[(2ji + 1)2 − 1] such displacement

operators; a much smaller number than (2j + 1)2 − 1.
Transformations in large Hilbert spaces are complicated and cumbersome and the

factorization discussed, simplifies them. Of course we know that if we have a large Hilbert
space with dimension 2j +1 and a product of smaller Hilbert spaces (with 2j +1 = ∏

(2ji +1))
there exist mappings between them. But the problem is to construct them explicitly and also to
find ‘intelligent mappings’ which are useful in our context. In this paper, we show explicitly in
equation (36) how to perform unitary transformations in the large space using the displacement
operators in the small spaces. Our scheme requires the (2ji + 1) to be coprime with respect to
each other. For example, we can factorize 2j + 1 as product of powers of prime numbers. The
scheme does not work when the factors are not coprime, and in this sense it is a bit restrictive.
On the other hand this ‘mild constraint’ leads to strong results like equations (24) and (30).
From a practical point of view this restriction is not a major obstacle for an implementation of
the scheme.

The work has implications for the recently discussed qudit approach to quantum
information processing [1]. It shows that we can use large qudits and perform the necessary
unitary transformations through appropriate unitary transformations in smaller qudits, which
can be implemented physically more easily.
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